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$3 Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria 
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Abstract. In this paper a solution of the renormalised Thirring model constructed only from 
two scalar massless fields is studied, The representations of the conformal group for the 
solution as well as those for the scalar fields are obtained. I t  is proved that the renormalised 
Thirring equation is covariant with respect to the above representations. 

1. Introduction 

The free scalar massless field in two space-time dimensions plays an essential role in the 
construction of the Thirring model. As is well known, such a field does not exist in the 
conventional sense (the field operators are supposed to act in an indefinite metric space 
(Wightman 1968, Klaiber 1968)) and it is treated as an auxiliary field. That is why most 
authors have not paid enough attention to it, and up to recent times some of its 
properties have remained unknown. We have in mind the existence of a charge that 
does not annihilate the vacuum state as well as the transformation properties with 
respect to the two-dimensional conformal group. The existence of such a charge was 
pointed out in the paper by Nakanishi (1977), but due to the incorrect definition of the 
dual field the author missed the second charge. The transformation properties with 
respect to the Lorentz group were studied in the paper by Hadjiivanov and Stoyanov 
(1977), where the correct representations of the group have been found. Concerning 
the conformal group, we argue that the investigation of the transformation properties 
with respect to the latter, performed by Schroer and Swieca (1974), is incomplete. That 
is why in the present paper a solution of the two-dimensional equations for the free 
scalar massless field is given. In  contrast to Klaiber (1968) and Nakanishi (1977), our 
formulation is manifestly translationally invariant and the existence of a second charge 
is taken into account. These solutions are exploited to construct the spinor fields of the 
Thirring model. The correct treatment of the problems considered gives us the 
possibility to determine the representation of the conformal group, under which the 
renormalised Thirring equation is covariant. 

$ On leave of absence from Institute for Nuclear Research and Nuclear Energy, Boul. Lenin 72,1113 Sofia, 
Bulgaria. 
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2. The scalar massless field 

In  this section we define the free quantum scalar massless field in two dimensions. Such 
a field must satisfy the wave equation 

c l4(x)  = 0 (2.1) 

and the commutation relation 

[4(x) ,  d(Y)l=im-Y). 
(For the explicit form of D(x )  and the other standard commutation functions in two 
dimensions see appendix 1 .) 

It  is well known that, in two space-time dimensions, a dual scalar field &(x)  exists, 
which also satisfies equation (2.1) and (2.2) and is related to 4 ( x )  by: 

d,q5(x) + E , ,  a"&x) = 0 (2.3) 

$(x)=  dz '  &,q5(x0, z ')+R(x') ,  (2.4) 

where E,,, = -E",,  eO1 = 1. 

Integrating the differential relation (2.3) we obtain the following explicit form of &(x): 
x 2  i, 

where R(xo)  is a regularisation counter-term for the integral on the right-hand side of 
equation (2.4), which in  general is divergent. One can prove that R ( x o )  must satisfy the 
following reltaions: 

aoR(x") =&q5(x0, X1)lx1+-, [R(xo), q 5 ( y ) ] =  d =constant. (2.5) 

Then equations (2.4) and (2.5) imply that the following commutation relation between 
&(x) and @ ( y )  holds: 

( 2 . 6 a )  

So we see that the regularisation procedures leads to an arbitrariness in the com- 
mutation relation ( 2 . 6 ~ ) .  In what follows we fix the latter by choosing d = $i, i.e. 

[$(XI, 4 ( y ) ]  = i d ( x  - y )  - t i  + d .  

[ & ( x ) ~ ~ ( Y ) I =  i d ( x - y ) .  (2.6) 
I n  order to separate the creation and annihilation parts from the fields 4(x) and &(x) 
one must either use the formula 

(and the analogous formula for the field &(x)), or define the momentum space 
representation. As is well known, the Fourier integral in that case is divergent, due to 
the infrared singularity of the Lorentz invariant measure. The regularisation procedure 
can be determined by the condition that the two methods for separation of the creation 
and annihilation parts are compatible. 

The mathematical peculiarities of the two-dimensional scalar massless fields require 
their more precise definition as operator-valued generalised functions. Namely, we 
consider those solutions of equations (2.1)-(2.6) which satisfy the following subsidiary 
conditions. 

( a )  The fields q5(x) and 6 ( x )  as well as their creation and annihilation parts are 
integrable in the space S(lR2), which consists of complex infinitely differentiable and 
rapidly decreasing functions of two variables. 
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( b )  The integrals 

A'(0) = i(2/r)'12 5 ao4*(x) dx' (2.8) 

B'(0) = -i(2/r) ' I2 ao$'(x) dx' (2.9) I 
are convergent. This condition is relevant to the regularisation procedure, as well as to 
the existence of non-zero charges. As is well known the quantities 

(2.10) 

(2.1 1) 

are conserved. One can readily prove that they do not commute with the fields 4(x)  and 
$(x) due to the equal-time canonical commutators 

[ao4(xo, x') ,  4(xo, y')] = -i S ( X '  - y').  (2.12) 

That is why the quantities Q and d should not vanish. One can esaily see, integrating 
the above formula over x ' ,  that the following commutation relations hold: 

[Q, 4 ( x ) l =  [d, J ( x ) l =  -i, (2.13) 

while the remaining two commutators are zero due to the fact that d,d(~)l .~=~ = 0. 
Now we give the definition of the fields C$'(x) and $*(x) as operator-valued 

generalised functions in S(R2). Namely, we fix the regularisation of the infrared 
divergence by defining the Fourier transforms of the fields in the following way. 
Suppose @(x) belongs to the S(R2) space and F ( p )  is its Fourier transform 

1 
F ( p o ,  p ' )  = J @(x) e-''' d2x, (2.14) 

while 

f'(p')=F(*lp'l, $1. 
Then we define 

(2.15) 

4'(Ca) ~' (X)O. (X)  d2X = ( - ; ) ' I 2  I ~ ( A ' ( ~ ' ) f . ( p ' ) - A ' ( o ) f * ( O ) B ( w  --b'I)), 
(2.16) 

I 
I 1/2  

$*(@) = $*(x)@(x) d2x = -( -) 1 %(B*(p')f*(p')  -B'(O)f'(O)O(K - Ip'I)). 
2 IP I 

(2.17) 

It is readily seen that out regularisation is translationally invariant, contrary to that of 
Klaiber (1968). The latter has the following form in our notation: 

and an analogous formula for the fields $':(x). (Here the subscript K stands for 
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Klaiber's fields.) Evidently formulae (2.16) and (2.18) differ by the constant operator 

Analogously 

(2.20) 

The operators (2.19) and (2.20) are obviously translationally non-invariant. It is 
evident that if the test functions @(x) satisfy the condition 

1 @ ( x )  d2x = 2rf*(O) = 27rf(O) = 0 (2.21) 

then our regularisation and that of Klaiber are identical. (We denote the subspace of 
functions f(p') E S(R2) for which f(0) = 0 by So(C,).) I t  is readily seen that on So(C+) 
the metric is positively definite, since the regularising term that makes it indefinite drops 
out on So(C+). Besides that, if the fields are defined as operator-valued functions on 
So(C+) then the charges Q and d should commute with the field which is not 
contradictory to the fact that they are non-zero. 

The commutators [A+(p'),  A-(q ')I and [B+(p' ) ,  B-(q ' ) ]  differ from the canonical 
ones by a counter-term with support at the point p' = q1 = 0 (see appendix 2). 

One can easily check that the condition that d is non-zero implies that A*(p') has a 
jump at the point p'  = 0, i.e. 

(2.22) 

where a* and 6' are new creation and annihilation operators, while E @ ' )  is the usual 
sign function defined at the point p' = 0 by ~ ( 0 )  = 0, so that the integrals, where ~ ( p ' )  
occur, are defined in the sense of principal value ( ~ ( p ' ) / I p ' l =  P(l /p ' ) ) .  The differen- 
tial relation between 4 (x )  and & ( x )  leads to the equality 

B'(p') = b*(p' )  + E ( p ' ) U * ( p ' ) *  

A ' ( P  ') = a * ( P  ' 1 + E ( P  ')f* ( P  ' 1 * 

(2.23) 

Now the operators A*@')  and B*(p') are completely determined if we determine their 
behaviour in the neighbourhood of the point p' = 0. We stress that A*(O) = a'(0) and 
B'(0) = b'(0) must be the limitsof the operators a'(p') and b*(p')  whenp' + 0. So that 
we can write 

(2.24) 

where Re(;)> 0 and 

lim Ip'l"c'(p') = Iim lp'l't*(p') = 0. 
p'+o p ' + o  

In what follows, we shall operate with normal ordered products of these fields as well as 
their normal ordered exponentials. Since the problem of their definition is discussed in 
detail in Wightman (1968) and Klaiber (1968) we shall only note here that normal 
ordered products and exponentials of our fields can be expressed by those of Klaiber in 
view of equations (2.19) and (2.20). 
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3. The massless Thirring model 

In this section we consider the renormalised massless Thirring model. Recently 
Mandelstam (1975) and Pogrebkov and Sushko (1975,1976) have shown how a spinor 
field can be constructed from exponentials of scalar fields. So we argue that the solution 
of the renormalised Thirring model can be built from exponentials of the fields C$*(x) 
and $*(x) only. We do not discuss here the problem of the existence of exponentials of 
our scalar fields, since, as was pointed out in the previous section, there is no difference 
in principle between solving the problem in our case and that of Klaiber. 

Now we formulate the following statement. Consider the quantities 

where 

are complex numbers and 

(3.1) 

(3.2) 

Suppose that C$*(x) and $*(x) satisfy equatigns (2.1)-(2.3) and (2.6), then the quantity 
(3.1) satisfies the renormalised equation of the Thirring model: 

(3.3) 

where the Dirac matrices y ,  are chosen to be y = c l ,  y = i g Z ,  y 5  = y o y l  = -v3 and 
ci, i = 1 , 2 ,  3, are the Pauli matrices, while the renormalized current B,(x) is defined by 
(see Johnson (1961) 

i Y W  a,lL(x) = - g :  B,(x)y"4(x): 
0 1 

9,b) = X i , b ) + L ( x ) ) ,  (3.4) 

j , ( x )  and ;,(x) being 

where 
2 

E'2=  -6 E'. € = 0.  

(3.6) 

(3.7) 

The proof goes as follows. We first calculate the current 9,(x). For this purpose we 
substitute (3.1) into (3.5) and (3.6), and make the necessary re-ordering. Taking the 
limits we obtain 
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where Fk(x) = a 4 ( x )  +( - l )kpJ(~) ,  and we have used the fact that aP = 7r. 

Inserting (3.8) and (3.9) into (3.4) we obtain 

(3.10) 

On the other hand using (2.3) and the equality y W y 5  = eWvy one can easily check the 
identity 

iyFdW4(x) = (CY -PhW:&4(x)4 (x ) : .  (3.11) 

Therefore substituting (3.10) and (3.1 1) into (3.3) we find an algebraic equation for the 
coefficients CY and P ,  which, as we can easily see, is satisfied by a and p from equation 
(3.2). 

Therefore +(x) defined by (3.1) and (3.2) is a solution of the renormalized Thirring 
model. Comparing it with the solution of Klaiber, we see that they coincide on So(C+). 

4. Transformation laws for the fields +*(x), t$*(x) and +(x) 

In this section we obtain representations of the two-dimensional conformal group, 
which act in the space of the field operators 4*(x),  C$*(x) and therefore of $(x). One 
could try to proceed directly in order to construct transformations, which leave all 
commutators of the scalar fields (equal frequency commutators included) invariant. 
Since such an approach is more difficult, we use another; one which has the advantage 
of showing that the structure of the scalar field obtained in § 2 leads to these 
transformations. We begin with the Lorentz transformations. In Schroer and Swieca 
(1974) it was proved that under Lorentz transformations the fields q5*(x)  and $*(x) 
transform inhomogeneously: 

(4.1) 
A* X 4'b) - 4 * ( A x x ) - 2 ( 2 7 r ) ' / z  b", 

" = (sinh x cosh x 
(4.2) 

Now since x (the parameter of the Lorentz transformation) and b*(O) are pseudo- 
scalars, while a'(0) is a scalar, we see that relations (4.1) and (4.2) have the proper space 
parity. Another feature is that they do not mix creation and annihilation parts. 
Applying these transformations to the quantity 4(x)  defined by (3.1), we obtain 

4 (Axx) : (4.3) 4(x) 2 : e i x ( a ~ + ~ y 5 ~ )  

where the operators L and S are defined as 

We see that equation (4.3) is not a transformation law for a spinor 
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One can easily check that the quantity &I++ is not Lorentz invariant, but the quantity 
&y"$ is a Lorentz vector. Thus equation (4.3) naturally distinguishes between the scalar 
and the vector forms of the Thirring model. 

Now we consider the dilations. Since the commutation function D*(x)  is not 
invariant, i.e. it transforms under dilations as 

D 1 
D*(x)  2 D*(Ax) = D*(x) -- In A ,  (4.5) 2Tr 

we see that the proper definitions of the transformation laws of cp*(x) and G*(x) are 
inhomogenous, the inhomogenous terms being linear combinations of the constant 
operators a'(0) and b*(O), as they are in equation (4.1) and (4.2). One can readily 
observe that the coefficients of this combination are not uniquely determined by the 
condition that the commutators of cp*(x) and G*(x) are invariant under the dilatation 
group, and therefore an arbitrariness exists. We fix this arbitrariness by imposing the 
conditions that the transformed fields be scalar and pseudoscalar again, and that the 
following equations: 

(4.6) 

be invariant under the group. Both these conditions have a group meaning, the first 
because space parity is included in the full conformal group, while the group character 
of the second can be seen after considering the special conformal transformations (at 
least infinitesimally). 

cp+(X)lO) = $+(X)IO) = 0, 

Thus we can write finally 

(4.7) 

Inserting equations (4.7) and (4.8) in (3.1) we obtain 

D, 4 ( x )  - : exp[i In A (aL + p y ' S ) ] $ ( A x ) : .  (4.9) 

The transformation law (4.9) is not the standard one and therefore it is obvious that we 
cannot assign any conformal dimension to the field $(x), although such a dimension 
appears in the two-point function. This is a very important feature because even if we 
use the standard formulation of the Thirring field (i.e. define $(x) in the Hilbert space) 
the transformation law (4.9) remains valid. 

We now consider the special conformal transformations. I t  is easier to begin with 
the infinitesimal transformations, so first we give some definitions. We define the 
representation acting in the space of field operators as 

W 4 ( x ) &  = Tg4(x), (4.10) 

where, for the Lorentz group, T, is defined by the right-hand sides of equation (4.1) or 
(3.2), while, for the dilations, by the right-hand sides of equations (4.7) or (4.8) 
respectively. We define the generators by 

(4.11) 
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particularly we have 

(4.12) 

Now we can write down the commutators of the generators of the representations (4.1), 
(4.2), (4.7) and (4.8) with the fields d*(x)  and +*(x), respectively 

(4.15) 

Having in mind formulae (4.13)-(4.16) we can realise the generators K,  of the special 
conformal transformations by the following formulae: 

(4.18) 

In order to prove formulae (4.17) and (4.18) one must check that the commutators of K,  
with Mfiy,  D and expecially with P,(P, = i a,) are the correct ones for the conformal 
algebra in two dimensions. Since this is trivial we omit it here. 

Now we shall reconstruct the global transformations. For the purpose, we note that 
in the two-dimensional space-time the conformal group is decomposed into a direct 
product of two groups SL(2, R). Indeed if we denote 

(4.19) 

then x+ and x -  form invariant subspaces, i.e. they transform as follows under special 
conformal transformations: 

0 1  0 1  x + = x  + x ,  x-=x  - x ,  

where 

p*(S, x,) = 1 + (so 7 s ?Xi, 

(4.20) 

(4.21) 

and 6,  are the parameters of the special conformal transformations. One can see that 
the quantities In p = ln(p+p-) and In (T = In ( p + / p - )  have the space parity of a scalar and 
a pseudoscalar, respectively, and that they satisfy the following equations: 

(4.22) 
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So if we write 

(4.23) 

(4.24) 

one can easily prove that the infinitesimal transformations following from (4.23) and 
(4.24) coincide with those implied by equations (4.17) and (4.18), respectively. It is also 
easy to check that the transformations (4.23) and (4.24) have the necessary group 
property, so we omit the proof here. 

Now we can define the special conformal transformations of the Thirring field. They 
read 

The commutator of the corresponding generators with + ( x )  is then 

[K,, +(x)] = -i(2x,x, - g , A  )~"+(x)-~x, : ( (YL +pySs)+(x) :  2 

+ 2 E , J y ( Y ~  + P ? ~ L ) + ( ~ ) : .  (4.26) 

At this point we must not that representations, similar to those given by formula (4.23), 
have already been discussed by Schroer and Swieca (1974) but they missed they missed 
the term lnlg(S, x) /  (in our notation). We insist that the latter is very important, as we 
shall see in the following section. 

5. The covariance of the renormalised Thirring equation 

In this section we prove that the renormalised Thirring equation is covariant under the 
representations of the conformal group obtained in the previous section. 

We first note that all commutators of the fields 4*(x) and &*(x) are invariant, while 
equations (2.1) and (2.3) are covariant under the action of the Lorentz transformations 
(equations (4.1) and (4.2)), the dilatations (equations (4.7) and (4.8)) and the 
infinitesimal special conformal transformations (equations (4.17) and (4.18)). This is 
easily verified by direct computation. We shall show that this property takes place even 
for representations of a larger group, namely the universal covering group of the 
conformal group. 

For this purpose, we consider the variables x+ and x- defined by equation (4.19) as 
complex, and in what follows we denote them by z+ and z - ,  respectively. As we 
mentioned in the previous section, the conformal group, with respect to the variables 
zt, is decomposed into two SL(2, R) groups, which act on z s  in the following way: 

, (Yz*+S 
pz* + 7' 

z*+z*  =- (5.1) 

where ( ~ y - p S  = 1, a, p, y and S being real parameters. (We must note that for these 
variables the proper Lorentz group action and the dilatations coincide, the parameters 
being y = 1, p = S = 0, a = e*'(=h), while for translations we have parameters p = 
0, (Y = y = 1.) It  is well known that the representation of SL(2, R) given by formula (5.1) 
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conserves the upper (lower) complex half-plane. So that if we introduce the functions 

then it is meaningful to define 

D * ( x ) = *  lim D(Z) ,  (5 .3a)  
Imr-TiO 

(5.36) 

Since D(z) and b(z) under special conformal transformations (a = y = 1 ,  S = 0, p = 8,) 
transform as 

1 
4 T  D(z)+D(z)+- In p ( 6 ,  z ) ,  (5.4) 

we see that we can keep the commutators of 4 * ( x )  and &*(x) invariant with respect to 
the latter, if instead of equations (4.23) and (4.24) we take the following transformation 
laws: 

with x o  -+ xo  - io for the annihilation operators and x o  + xo+  io for the creation opera- 
tors. 

Now one can easily prove that the field equations (2.1) and (2.3) are covariant with 
respect to the transformation laws (5 .6)  and (5.7) since In p and In (+ satisfy 

0 I n p  = 0 In (+ = 0, 

a, I n p + ~ , , ~ ” l n ( + = 0 .  
( 5 . 8 )  

(5 .9)  

Therefore if 4 * ( x )  and &*(x) are transformed according to the representations (5.6) 
and (5.7) of the universal covering group of the conformal group, then the transformed 
fields satisfy equations (2.1)-(2.3) and (2.6). We now write, for completeness, the 
transformation law for the Thirring field 

(5.10) 
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We note that in  the case of equation (5.10) the normal ordering means not only that 
creation operators are kept to the left and annihilation operators to the right, but also 
that these operators have the proper sign of io from equations (5.6) and (5.7). 

If we now recall the statement proved in 9: 3, we see that the quantity (3.1) 
constructed from the transformed fields (q5*(x))' and (d*(x))' (i.e. that defined by 
equation (5.10)) is again a solution of the Thirring equation (3.3), since it is shown that 
the transformed fields (q5*(x))' and ($*(x))' satisfy the same equation as the original 
ones. Therefore, the Thirring equation is covariant with respect to representations of 
the universal covering group of the conformal group. 

So we see that, despite their quite peculiar form, the representations obtained in this 
paper proved to be sensible indeed. 
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Appendix 1. Summary of the definitions of the commutation functions 
D ( x ) ,  d(x ) ,  D*(x)  and d * ( x )  

1 1 1 
27ri 2 2 

D ( x ) = - ~  d2pe(p0)S(p2) e-ipx =- - (e (x1+Xo) -e(x1-X0) )=- - -E(X0)e(X2)  

iD(x) = D+(x)  + D-(x)  

= + - l n ( - p  1 2 2  x *iOx 0 ) 
47r 

1 1 1 
d ( x )  = -- 5 d2pe(p1)6(p2) e-ipx = --(e(xo++xl)-e(xo-xl))  = --e(x1)e(-x2) 

27rl 2 2 

ir j(x) = d + ( x ) + d - ( x )  

1 xo-x'-iO 
47r xo+xl-iO 

=+-ln 
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Appendix 2. Summary of some useful commutators 
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